Therapeutic Experience on Stance Control Knee-Ankle-Foot Orthosis With Electromagnetically Controlled Knee Joint System in Poliomyelitis
نویسندگان
چکیده
A 54-year-old man with poliomyelitis had been using a conventional, passive knee-ankle-foot orthosis (KAFO) with a drop ring lock knee joint for about 40 years. A stance control KAFO (SCKAFO) with an electromagnetically controlled (E-MAG) knee joint system was prescribed. To correct his gait pattern, he also underwent rehabilitation therapy, which included muscle re-education, neuromuscular electrical stimulation, strengthening exercises for the lower extremities, and balance training twice a week for about 4 months. Both before and after rehabilitation, we conducted a gait analysis and assessed the physiological cost index in energy expended during walking in a locked-knee state and while he wore a SCKAFO with E-MAG. When compared with the pre-rehabilitation data, the velocity, step length, stride length, and knee kinematic data were improved after rehabilitation. Although the SCKAFO with E-MAG system facilitated the control of knee motion during ambulation, appropriate rehabilitative therapy was also needed to achieve a normal gait pattern.
منابع مشابه
The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.
BACKGROUND Traditionally, the anatomical knee joint is locked in extension when walking with a conventional knee-ankle-foot orthosis. A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. OBJECTIVE The purpose of this study was to determine differences of the powered ...
متن کاملExamination of knee joint moments on the function of knee-ankle-foot orthoses during walking.
The goal of this study was to investigate clinically relevant biomechanical conditions relating to the setup and alignment of knee-ankle-foot orthoses and the influence of these conditions on knee extension moments and orthotic stance control during gait. Knee moments were collected using an instrumented gait laboratory and concurrently a load transducer embedded at the knee-ankle-foot orthosis...
متن کاملThe physiological cost index of walking with a powered knee-ankle-foot orthosis in subjects with poliomyelitis: A pilot study.
BACKGROUND A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. OBJECTIVE The purpose of this study was to determine its effect on the physiological cost index, walking speed and the distance walked in people with poliomyelitis compared to when walking with a knee-an...
متن کاملDesign and functional evaluation of a quasi-passive compliant stance control knee-ankle-foot orthosis.
In this paper, we present the mechanical design, control algorithm, and functional evaluation of a quasi-passive compliant stance control knee-ankle-foot orthosis. The orthosis implements a spring in parallel with the knee joint during the stance phase of the gait and allows free rotation during the swing phase. The design is inspired by the moment-angle analysis of the knee joint revealing tha...
متن کاملDesign and Evaluation of an Articulated Ankle Foot Orthosis with Plantarflexion Resistance on the Gait: a Case Series of 2 Patients with Hemiplegia
Ankle-foot orthoses (AFOs) have been described to have positive effects on the gait biomechanics in stroke patients. The plantarflexion resistance of an AFO is considered important for hemiplegic patients, but the evidence is still limited. The purpose of this case series was to design and evaluate the immediate effect of an articulated AFO on kinematics and kinetics of lower-limb joints in str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 40 شماره
صفحات -
تاریخ انتشار 2016